TEMPERATURE DEPENDENCE OF THE DIFFUSION
COEFFICIENTS OF GASES

E. M. Nafikov and A. G. Usmanov UDC 533.15

The use of empirical power laws to calculate the diffusion coefficients of gases is considered.
The method of similitude is used to obtain generalized relations which permit the calcula-
tion of the diffusion coefficients of gases in temperature ranges not covered by experiment.

A number of equations have been recommended by various authors for calculating the diffusion co-
efficient in binary mixtures of gases. Some of these equations have a sound theoretical basis, some are
semiempirical in character, and some are obtained by generalizing experimental results.

Rigorous kinetic theory [1, 2] leads to the relation
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Since collision integrals have been tabulated for several spherically symmetric intermolecular inter-
action potentials it is possible to calculate the diffusion coefficients for a number of nonpolar gases to
adequate accuracy. It is very difficult to evaluate the collision integrals for nonsymmetric potential func-
tions which depend on the angle of impact. Therefore the theory still does not permit the calculation of
the diffusion coefficients of gases with polar and linear molecules.

The main limitations and assumptions of this theory are discussed in detail in [2], where it is noted,
for example, that Eq. (1) is obtained rigorously for monatomic gases by taking account only of binary col-
lisions of molecules. In spite of this it should be regarded as the most consistent at the present time,
based on modern concepts of the nature of molecular processes.

The simplest and therefore the most satisfactory of the empirical equations is the familiar Winkelman
relation
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It follows from (1) and (2) that
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Thus in any region where n = const we should expect a linear relation between the logarithm of the col-
lision integral and the logarithm of the reduced temperature.

Such log—1log graphs are shown in Fig. 1 for several models of the intermolecular interaction po-
tential. Since the graphs are not straight lines the rigorous kinetic theory of gases does not permit us to
consider n constant. Furthermore, for all models at high (and at very low) reduced temperatures, be-
ginning approximately with T* = 5, these graphs can be considered straight lines with far greater justifi-
cation. Therefore under these conditions Eqg. (2) with constant n can be extrapolated with confidence.

Of course these conclusions apply only to those gases which can be described by spherically sym-
metric potential models.
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Fig. 1. Logarithm of reduced collision integral
as a function of the logarithm of the reduced
temperature: 1) Lennard —Jones model (6-12)
(2]; 2) potential well model with 1/R = 0.4 [2];
3) the same for 1/ R = 0.6 [2]; 4) Sutherland
model with attractive term proportional to the
sixth power [2]; 5) modified Buckingham model
with @ =12 [3]; 6) the same witha =15 [3]; 7)

\\\:\ Guggenheim —McGlashan model [4]; 8) Morse
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model with C = 6 [5]; 9} Kihara model with v
= 0.1 [4]; 10) the same with v= 0.6 [4].
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TABLE 1. Values of the Coefficients a and b in Eq. (5)

|
Binary mixture a b P8R Average spread
| jof points, %
l

Monatomic gases . 0,306 0,000 18,56 +3,5
Monatomic and diatomic gases 0,246 0,00079 19,46 3,5
Diatomic gases 0,209 0,00158 23,50 2,5
Diatomic and triatomic gases 0,175 0,0053 27,06 4,0
Certain polyatomic gases 0,185 0,0087 25,00 4,0

It is of interest to investigate the temperature dependence of the diffusioncoefficients of gases by the
similitude method. When this method is applied to molecular diffusion processes it leads to a functional
relation convenient for generalization [6, 7]:
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This relation was used to generalize the experimental data on the diffusion and self-diffusion coef-

ficients of gases. The results of the generalization are shown in Fig. 2 as graphs of log D/DS1 vs (8 -5
/R. They show that Eq. (4) can be expressed in the form (Table 1}:
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If Eq. @) is written in a form analogous to (2)
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we obtain for the exponent
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From other considerations a similar relation was obtained in [8] for monatomic gases
n=e—flgT, (8)
where « and 8 are constants.
Comparison shows that (8) is a special case of (7) when ucpm = const.

The generalized relations obtained were used to calculate the diffusion and self-diffusion coeffi-
cients of gases in temperature ranges not covered by experiment. A portion of these calculations can be
approximated to +3-4% by power laws of type (2). These are listed in Table 2. It is clear from the table



TABLE 2. Values of Dy, Ty, and n of Eq. (2) for P =1 atm Obtained
by Using the Generalized Relations

Gases To°K Do,cmz/sec n Calculateod tem
perature, C
Monatomic and | He— air 273 0,630 1,71 —50—~ 700
diatomic gases
Diatomic gases Hy—air 273 0,660 1,74 —50—1000
: 1273 9,86 1,91 1000—2700
H,—0, 273 0,700 1,19 —50—~1000
1273 11,4 1,90 10002300
Hy,—N, 273 0,700 1,74 —50—1000
1273 10,4 1,91 1000—2500
H,—CO 273 0,651 1,75 —~—50—1000
1273 9,85 1,89 1000—2500
Ny—N, 273 0,188 1,72 ~—50—1100
0,—0, 273 0,187 1,75 —50— 600
cO—CO 273 0,175 1,72 —50— 800
N,—CO 273 0,192 1,72 —50— 900
0,—N, 273 0,181 1,72 —50-— 800
Q,— air 273 0,178 1,72 ~50— 800
Diatomic and ‘ 273 0,142 1,82 —50— 500
triatomic gases N,—CO, 773 0,952 1,60 500—1500
273 0,145 1,79 -—50-- 500
0,—~CO, 773 0,888 1,59 500~-1300
273 0,137 1,74 ~—50— 500
CO—CO, 773 0,855 1,57 500—1500
273 0,232 1,78 0— 500
0,—H,0 773 1,43 1,56 500—1900
273 0,229 1,87 0— 500
Air—H,O 773 1,56 1,59 500—2500
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Fig. 2. Generalized relations for diffusion and self-diffusion
coefficients of gases: 1-1) monatomic gases, SI/R =18.56;1-2)
monatomic and diatomic gases, S;/R =19.46; 2-2) diatomic
gases, S;/ R = 23.50; 2-3) diatomic and triatomic gases, S;/R

= 27.06; m-n) certain polyatomic gases, SI/R = 25.00: 1) Ne
—Kr; 2) Ne—Ne; 3) Ar—Ar; 4) Ne—Kr; 5) Ar—Kr; 6) Kr—Kr; 7
Xe —Xe; 8) Ar—Xe; 9) He —Ar; 10) Ar—H,; 11) Ar—N,; 12) He
—N,; 13) Hy—0y; 14) CO—0y; 15) Ny —Ny; 16) 0y —0y; 17) Hp—Ny;
18) CO,—Ny; 19) COy—air; 20) HyO—air; 21, 23) CO,—Ny; 22)
H,0—0,; 24) CO,—COy; 25) CH,—CHy; 26) CO,~Ny0; 27) CH,—0,.

that the temperature range in which n can be considered constant decreases as the molecular structure
of the gases becomes more complex.

NOTATION

D  is the diffusion coefficient, cm?/sec;
P is the pressure, atm;
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is the temperature, °K;
are the molecular weights of the component gases;

is the reduced collision integral;
is the reduced temperature;

T3, E19/ Kk are the interaction potential parameters with units A and °K, respectively.
Dy, Ty, Py are the scale values of the corresponding parameters under normal conditions;
DS1 is the scale diffusion coefficient corresponding to the scale value of the entropy Sy;
3 is the molar entropy, kJ/kmole-°C;
a, b are parameters depending on the molecular structure of the diffusing gases;
mep, is the mean molar heat capacity, kJ/kmole - °K,
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